

Sean Armstrong, DHPLG: Update to Part L

Pratima Washan, AECOM: Cost Optimal Study

Orla Coyle, SEAI: Update to DEAP

Natalie Walsh, NMA & Daniel Matthews HOB: Sean Foster Place

Pratima Washan, AECOM: Overheating Study

www.seai.ie

Part L of the Building Regulations

Sean Armstrong DHPLG

Rialtas na hÉireann Government of Ireland

EPBD and Part L 2019 NZEB and Major Renovation

Seán Armstrong, Senior Adviser Building Standards Section, Department of Housing, Planning and Local Government

Outline

- Energy Performance of Buildings Directive
- NZEB & Part L Dwellings
- Major Renovations to cost Optimal
- Part F-Ventilation
- Training & Standards
- Cost Optimal
- International Collaboration
- Next Steps

Energy Performance of Buildings Directive (EPBD) NZEB and Major Renovations

Article 9

Member states to ensure that all new buildings are "Nearly Zero Energy Buildings" by 31st Dec 2020

Article 7

Major Renovations to be at Cost Optimal Level in Building Codes

EUROPE	EUROPEAN UNION			
THE EUROPEAN PARLIAMENT	THE COUNCIL			
	Strasbourg, 19 May 2010 (OR. en)			
2008/0223 (COD) LEX 1124	PE-CONS 15/10			
	ENER 131			
	CODEC 382			
DIRECTIVE OF THE EUROPEAN H	PARLIAMENT AND OF THE COUNCIL			

EPBD and RED Definitions - Nearly Zero Energy Buildings & Major Renovation

'nearly zero-energy building' means a building that has a very high energy performance, as determined in accordance with Annex I (i.e. DEAP). **The nearly zero or very low amount of energy** required should be covered to a **very significant extent by energy from renewable sources**, including energy from renewable sources produced on-site or nearby;

'major renovation' means the renovation of a building where more than 25 % of the surface of the building envelope undergoes renovation.

Development of NZEB Dwellings in Building Regulations

Part L Building Regulations requirements for new Dwellings (primary energy)

BER-Building Energy Rating

Draft Transitional Arrangements

- NZEB and Major Renovation planned to be signed into legislation by 19th April 2019 with a 6 month lead in.
- NZEB and TGD L 2019 Dwellings to apply to new Dwellings commencing construction from 1st November 2019 subject to transition.
- Transitional arrangements to allow TGD L 2011 Dwellings to be used where planning approval or permission has been applied for on or before 31st October 2019 and substantial completion is completed within 1 year i.e. by 31st October 2020

• DEAP planned to be published by SEAI by 19th April 2019. 9 Rialtas na hÉireann | Government of Ireland

Achieving compliance with TGD L Dwellings 2019

and Commissioning

1.6 User Information

at design stage

10 Rialtas na hÉireann | Government of Ireland

Dwellings

Overview of key changes to TGD L Dwellings 2019

- Introduction of NZEB, MPEPC=0.30, MPCPC=0.35
- Introduction of Major Renovations to a cost optimal level where technically, economically and functionally feasible
- Introduction of a Renewable Energy Ratio (RER) of 20% as per ISO EN 52000 (to replace 10kWh/m²/yr).
- Reduction of air permeability backstop from 7m³/hr/m² to 5m³/hr/m²
- Table 1- Reduction of wall and floor backstop U-Value from 0.21W/m²K to 0.18 W/m²K
- Table 1- Reduction of window backstop U-Value from 1.6 W/m2K to 1.4 W/m2K
- Inclusion of guidance to avoid overheating in dwellings
- Par 1.3.2.5 removal of variation of U-Value with percentage glazing
- Introduction of calculation of R_u value for corridors in apartments.

Main changes TGD L Appendix E – 2011 vs 2019

- 6 example dwellings including apartments: HP, Gas + PV, NV, CMEV, MVHR
- In semi-detached example, PV increases from 7.9m² to 8.63m² with gas boiler
- In semi-detached example, double glazing of 1.4 W/m²K changes to triple glazing 0.9 W/m²K
- LED lighting accounted for in DEAP (A+ bulbs, 94 lumen/cW, 4 W/m²)
- Efficient hot water use in showers/taps accounted for in DEAP (125 l/p/d and 6l/min flow restrictor)
- Additional examples added for heat pumps and apartments
- User defined R_u value for unheated corridors included in mid and top floor apartment example

12 Rialtas na hÉireann | Government of Ireland

https://www.housing.gov.ie/housing/building-standards/tgd-part-f-ventilation/public-consultation-review-part-l-f-building

Part L Technical Guidance Document Appendix E Semi-Detached Example performance

	TGD L 2011 Dwelling heated by mains gas + PV	TGD L 2019 Dwelling heated by mains gas + PV	TGD L 2019 Dwelling heated by heat pump
Primary energy [kWh/m²/yr]	56	43	41
CO2 emissions [kg/m²/yr]	10	8	8
EPC	0.40	0.29	0.28
СРС	0.37	0.26	0.26
Renewable Energy Ratio (RER)	0.18	0.24	0.38

TGD L 2019 - Dwellings Major Renovations

- Where more than 25 % of the surface of the building envelope undergoes renovation the energy performance of the building or the renovated part thereof is upgraded in order to meet minimum energy performance requirements with a view to achieving a cost optimal level in so far as this is technically, functionally and economically feasible.
- The cost optimal performance level to be achieved is 125 kWh/m².yr when calculated in DEAP (B2).
- Qualifying elemental works for surface area calculation defined in Table 6.
- Alternative compliance routes in Table 7.

Major Renovation-Table 6

Table 6

Elemental works that are included in the surface area calculation for major renovation^{1,2,3}

External walls renovation

- External insulation of the heat-loss walls
- Replacement or upgrade of the external walls' structure
- Internal lining of the surface of heat-loss walls

Windows renovation

Replacement of windows

Roofs renovation

Replacement of roof structure

Floors renovation

Replacement of floors

Extension

 Extension works which affect more than 25 % of the surface area of the existing dwelling ¹ Major renovation requirement can be activated by works to a single element or to a combination of elements as per column 1 of table 7.

¹ Where major renovations to walls, roofs and ground floors constitute essential repairs e.g. repair or renewal of works due to fire, storm or flood damage or damage as a result of a material defect such as reactive pyrite in sub-floor hardcore or defective concrete blockwork, it is not considered economically feasible to bring these renovations to a cost optimal level.

³ Painting, re-plastering, rendering, re-slating, re-tiling, cavity wall insulation and insulation of ceiling are not considered major renovation works.

Major Renovation-Table 7

Table 7 - Cost Optimal Works activated by Major Renovation Additional Works to bring dwelling to cost optimal level in so far as they are Major Renovation > 25% Cost Optimal level as calculated in DEAP technically, economically and functionally surface area^{1,2,3,5} (Paragraph 2.3.3 a.) feasible (Paragraph 2.3.3 b.) Upgrade insulation at ceiling level where External walls renovation U-values are greater than in Table 5 External walls and windows & renovation Oil or gas boiler replacement⁶ & controls External walls and roof The cost optimal performance level to be upgrade where the oil or gas boiler is more than renovation achieved is 125 kWh/m²/yr. 15 years old and efficiency less than 86% &/or Replacement of electric storage heating⁷ External walls and floor systems where more than 15 years old and with renovation heat retention not less than 45% measured according to IS EN 60531. Upgrade insulation at ceiling level where U-values are greater than in Table 5 & Oil or gas boiler replacement⁶ & controls upgrade where the oil or gas boiler is more than New Extension affecting more 15 years old and efficiency less than 86% than 25% of the surface area The cost optimal performance level to be &/or of the existing dwelling's achieved is 125 kWh/m²/yr Replacement of electric storage heating⁷ envelope (see 2.3.6) systems where more than 15 years old and with heat retention not less than 45% measured according to IS EN 60531 & Upgrade insulation at wall level where U-values are greater than in table 5.

16 Rialtas na hÉireann

Major Renovation - Examples

Semi-detached house (126 m²): hollow blocks walls with 25 mm mineral wool internal insulation, pitched roof with 50 mm mineral wool insulation on the ceiling, double glazing with 6 mm air gap, 80 % gas boiler installed with no heating controls, solid fuel stove secondary heating.

Proposed works to elements ¹	Major renovation (Yes/No)	Required additional works
A) Window replacement (13 % of envelope)	No	NA
B) EWI or IWI of walls (35 % of envelope)		
C) EWI or IWI of Walls and windows replacement (48 % of envelope)	Yes	Upgrade insulation at ceiling level to 0.16 W/m ² K or better as per table 5, and
D) EWI or IWI of Walls and replacement of roof structure (61 % of envelope)		90 % efficiency condensing gas boiler replacement and controls upgrade: time and temperature controls for space heating + time and temperature controls on domestic hot water
E) EWI or IWI of Walls and replacement of floor (61 % of envelope)		

¹Major Renovation of all elements should meet the requirements of Table 5 where material alteration applies.

Primary energy consumption before major renovation: 233 kWhr/m²/yr

Proposed works package B) is based on the following specification: 100 mm EWI, 300 mm attic insulation, 91 % efficiency gas boiler, full zone time and temperature controls on space heating with weather compensation, time and temperature control on domestic hot water with insulated primary pipework.

17 Rialtas na hÉireann | Gove

Primary energy consumption post major renovation: 121 kWhr/m²/yr

Regulatory Impact Assessment

- Uplift costed across 5 dwelling types (semi-detached, detached, bungalow, apartment-mid and top floor) using different combinations of fabric, services, ventilation and renewables.
- The average uplift in cost across all dwelling types modelled was 1.9% over current construction costs depending on the dwelling archetype and design specification applied.
- Overheating assessment on all types with some mitigation measures (reduced solar transmittance, appropriate use of blinds).
- High rise apartments assessed for renewables.

Overview of key changes to TGD F 2019

- Mechanical Ventilation guidance for AP ≤ 3 m³/hr/m²
- Guidance provided for Continuous Mechanical Extract Ventilation
- Introduction of certification of ventilation systems installation
- New examples for apartments
- Installation and Commissioning guide for Ventilation systems
- Same application date and transition as TGD L 2019

Training/Skills/Standards

- SEAI DEAP/NEAP, BER Assesors, Registered Contractors, Grant Schemes Technical Specification
- Solas/ Waterford/Wexford ETB- NZEB Specification vocational add on qualifications for existing crafts persons (awareness, blocklayers, carpenters, foremen, plasterers, plumbers, electrician)
- Advanced Engineering and Architectural training 3rd Level Institutes eg. Technological University Dublin, NUIG,CIT,LIT
- NSAI Standards- SR 50-2 (Solar Thermal), SR 54 Retrofit, SR for Heat Pumps and Solar PV
- NSAI Certification schemes

 Agrément Certification
 Air tightness testers
 Thermal Modellers
 Windows Energy Performance
 External Insulation
 Cavity Insulation
 Ventilation Validation

 Industry Led CPD – RIAI, EI, SCSI, ACEI, CIBSE, IGBC, CIAT, CIF
 20 Rialtas na hÉireann | Government of Ireland http://www.qualibuild.ie/wpcontent/uploads/2015/01/D2.3-QualiBuild-FES-Training-Manual-Final_PU.pdf

Cost Optimal 2018

New Semi-Detached

Major Renovation Semi-Detached

Macroeconomic Costs (Central energy price, 5% discount rate, EUR/m²)

Macroeconomic Cost (EUR/m²) 13kWh/m²/y= ASHP & 20% PV Cost Optimal = Gas Boiler & 20% PV Part L 2018=42kWh/m2/yr Primary Energy (kWh/m²)

Macroeconomic Costs (Central energy price, 5% discount rate, EUR/m²)

Macroeconomic Cost (EUR/m²) Improved fabric, Gas boiler Part L 2018=125 kWh/m2/yr Improved fabric ASHP, 20% PV Improved fabric, Gas boiler, 20% PV Primary Energy (kWh/m²)

Energy Performance of Buildings Directive 2018

- EV Charging by 10th March 2020
- Review Cost Optimal Report by March 2023

TGD L 2017: Amendment EV Charging for New Buildings –10th March 2020

Scope		MS Obligation	
New Buildings	Non-residential buildings with more than 10 no. parking spaces	Ensure the installation of at least 1 no. recharging point	
and		 Ensure the installation of ducting infrastructure for at least 1 in 5 no. parking spaces 	
Buildings undergoing Major Renovation	Residential buildings with more than 10 no. parking spaces	Ensure the installation of ducting infrastructure for every parking space	
Existing Buildings *	Non-residential – all buildings with more than 20 no. parking spaces	Lay down requirement for the installation of a minimum number of recharging points – applicable from 2025	

Buildings - International Comparison

GBPN 2013

World Bank 2018

Comparison of Energy Efficiency Policies for New Buildings

International Collaboration

- Ireland member of IEA Air Infiltration and Ventilation Centre
- United Nations Economic Commission for Europe Centre of Excellence for High Performing Buildings in Wexford
- Ireland is a lead participant in the EU Commission Concerted Action meetings for 27 member states

Next steps

- Introduce NZEB & Part L & Part F legislation by 19th April
- Publish DEAP by 19th April
- Implement validation scheme for ventilation 2H 2019
- Develop guidance for mitigation of overheating 2H 2019
- Develop National Standards for Heat Pumps and Photovoltaics
- Support the Development of NZEB skills delivery in collaboration with WWETB, Professional Bodies and Third Level Institutes

www.housing.gov.ie

email:buildingstandards@housing.gov.ie

Cost Optimal Study

Pratima Washan AECOM

27

Seal SUSTAINABLE ENERGY SHOW Calculating cost-optimal levels for building energy performance

- Requirement under European Energy Performance of Buildings Directive (EPBD)
- Defined as "the energy performance level which leads to the lowest cost during the estimated economic lifecycle"
- Covers new buildings and renovation of existing buildings and/or elements

Cost-optimal curves

Cost calculations:

- Macro-economic: Discount rate 5%
- Financial: Discount rate 7%

Sensitivity:

- Discount rates (3% macroeconomic, 7% financial)

- Low, central, high energy prices
- Alternative PEF for grid electricity
- Alternative cost of carbon (macroeconomic only)

Scope of analysis – New build

Dwelling types: Detached Semi-detached Bungalow Mid-floor flat Top-floor flat Apartment block **4 x Heating systems:** Gas boiler Biomass boiler ASHP District heating

3 x Lighting pks: Luminaire efficacy Power density

3 x Hot water pks: Shower flow rate WWHR 4 x Fabric packages:

Walls Floors Roof Windows Thermal bridging Air Tightness Ventilation (NV, MEV, MVHR) Thermal mass

3 x PV packages

#EnergyShow19

Macroeconomic Costs (Central energy price, 5% discount rate, EUR/m²)

Macroeconomic Costs (Central energy price, 5% discount rate, EUR/m²)

4

0.13

0.10

0.11

0.13

0.13

0.8

0.04

0.05

1

MVHR

+ HR

Low

ENERGY Comparative gap analysis – New dwellings

Reference building	Cost Optimal Range (kWh/m²/yr)	Cost Optimal Level (kWh/m ² /yr)	2018 Requirements(kW h/m²/yr)	Gap between cost optimal and Part L 2018
Bungalow	34 – 94	34	52	gap >15%
Detached house	36 – 74	43	42	
Semi-detached house	42 – 75	42	42	
Mid-floor flat	59 – 77	59	40	no gap
Top-floor flat	64 – 97	80	47	
Apartment	56 - 84	66	43	
Average	47 – 83	52	45	
				i follow us

Scope of analysis – Existing build

Dwelling types: Detached Semi-detached **Bungalow** Mid-floor flat Top-floor flat Apartment block Mid-terrace **Construction:** Cavity wall

Hollow block

nts	Heating –	Fabric elements –	
Eleme	Gas, Gas + SHW, ASHP	Walls, Roof, Floor, Windows	
kages	4 x Heating systems: Gas boiler Biomass boiler ASHP Storage heaters	6 x Fabric packages: Walls Roof Windows Air Tightness	
Pac	3 x Lighting & Hot water:	Ventilation (NV, MEV	
	Shower flow rate WWHR	3 x PV packages	

(NV, MEV)
Seai SUSTAINABLE OF IRELAND SHOW SHOW

Macroeconomic Costs (Central energy price, 5% discount rate, EUR/m²)

Semi-detached house – Existing, cavity

Seal Sustainable of Relation of the Regy authority of Relation of the Regy Comparative gap analysis – Existing Elemental SHOW

Reference building	Cost Optimal Level	Current Requirements	Cost optimal solution
Cavity walls	0.31 W/m ² K	0.55 W/m ² K	fully filled cavity
Solid walls	0.37 W/m ² K	0.35 W/m ² K	no gap
Roof, pitched	$0.12 M/m^{2}$	$0.16 M/m^{2}$	150mm mineral wool
			between joists + 200mm
Roof, flat	0.11 W/m ² K	0.16 W/m ² K	200mm PIR insulation
Floor (houses only)	0.22 W/m ² K	$0.15 \text{ M}/\text{m}^{2}\text{K}$	20mm of Vacuum
		0.43 W/III K	insulated Panel
Windows, houses	1.4 W/m²K	1.4 W/m²K	No gap
Windows, flats	0.9 W/m ² K	1.4 W/m²K	Triple glazing
Heating	Gas boiler (91%)	Gas boiler (90%)	No gap

Seal SUSTAINABLE ENERGY AUTHORITY OF IRELAND

ENERGY Comparative gap analysis – Existing packages

Reference building Cavity wall	Cost Optimal Range	Cost Optimal Level	2018 Requirement	Gap between cost optimal and
	(kWh/m²/yr)	(kWh/m²/yr)	s(kWh/m²/yr)	Part L 2018
Bungalow	90 – 151	90	125	gap >15%
Detached House	90 – 122	116	125	no gap
Semi-detached House	86 – 120	112	125	~ within 15%
Terraced House	116 – 125	116	125	no gap
Mid-Floor Flat	65 – 95	76	125	gap > 15%
Top-Floor Flat	93 – 125	107	125	gap > 15%
Apartment	75 – 106	87	125	gap > 15%
Average, cavity wall	90 – 123	103	125	
Average, solid wall	89 – 124	105	125	

Update to DEAP Methodology

Orla Coyle SEAI

DEAP Methodology

DEAP/ BER Methodology in place for 10 years

Part L Public Consultation

<u>https://www.housing.gov.ie/node/8753</u>

Dwelling Energy Assessment Procedure (DEAP) - 4.1 Draft Public Consultation Example A E1.1 (264.31 KB)

Dwelling Energy Assessment Procedure (DEAP) - 4.1 Draft Public Consultation Example B E1.2 (264.14 KB)

Dwelling Energy Assessment Procedure (DEAP) - 4.1 Draft Public Consultation Example C E1.3 (264.32 KB)

Dwelling Energy Assessment Procedure (DEAP) - 4.1 Draft Public Consultation Example D E1.4 (264.16 KB)

Dwelling Energy Assessment Procedure (DEAP) - 4.1 Draft Public Consultation Example E E1.5 (264.91 KB)

Dwelling Energy Assessment Procedure (DEAP) - 4.1 Draft Public Consultation Example F E1.6 (264.15 KB)

DEAP 4 – Launched in Summer 2018

Regulatory Impact Assessment

DHW Energy – Proposed Changes

Lighting Energy – Proposed Changes

Portable Lighting:

- Efficiency improved based DECC (UK) of the Household Electricity Survey (HES) in June 2013
- 21 lumen/W

Fixed lighting:

- New buildings: the assessor enters details based on design of the installed lighting, including Wattage, Efficiency and/or Lux levels.
- Existing buildings, the assessor enters default efficiency based on the lamp type/ rating with the lighting level fixed.

Renewable Energy Ratio

- Calculated in line with ISO 52000
- Included:
 - PV
 - Solar
 - Wind
 - Heat Pump
 - Biomass/ Biogas
 - District heating
 - CHP

- d perimeter: distant
- S1 thermally conditioned spaceS2 space outside thermal envelope
- 4 heat pump5 district heating/cooling
- ivelope 6 substation (low/medium voltage and possible storage)

The Renewable Energy Ratio *RER* =

 E_{Pren} Primary Energy of the Renewables E_{Ptot} Total Primary Energy

Renewable Energy Ratio - General

PV/ Wind/Solar/Biomass/ Biogas/ District Heating

- Equation 1 Ep, ren = Generated Energy x Fp, ren
- Equation 2 Ep, tot = Generated Energy x Fp, ren + Generated Energy x Fp, nren

Renewable Energy Ratio – Heat Pump

Heat Pump

• Environmental Energy = (Htg Demand_{HP} - Consumed Energy_{HP})

		E	fPnren	fPren on site	EPnren	Epren	EPtot	RER
		kWh		UI-SILC	kWh	kWh	kWh	nrb-os
+ Delivered energy	PV/Wind	0.0	0	2.08	0.0	0.0	0.0	
+ Delivered energy	Other	0.0	0	1	0.0	0.0	0.0	
+ Delivered energy	Solar	0.0	0	1	0.0	0.0	0.0	
+ Delivered energy	Biomass	0.0	0.1	1	0.0	0.0	0.0	
+ Delivered energy	Biodiesel	0.0	0.3	1	0.0	0.0	0.0	
+ Delivered energy	Bioethanol	0.0	0.34	1	0.0	0.0	0.0	
+ Environmental energy	HP	1842.4	0	1	0.0	1842.4	1842.4	
+ Saved energy	CHP	0.0	0	1	0.0	0.0		
+ Delivered energy	District Heating	0.0	0.6	0.4	0.0	0.0	0.0	
+ Delivered energy	Grid	1571.3	2.08	0	3268.4	0.0	3268.4	
+ Delivered energy	Thermal	0.0	1.1	0	0.0	0.0	0.0	
TOTAL STEP A					3268.4	1842.4	5110.8	0.36

Update to Software

- April 2019 in conjunction with Part L
 - Workbook 4.2.0 incorporating changes to Part L and incorporation of Heat Pump Tool
 - DEAP Manual 4.2.0
 - DEAP Survey Guide
- Summer 2019
 - Software 4.2.0 incorporating spreadsheet and interface changes
 - DEAP Manual 4.2.1

2		DE							• Addr					1	۲	<
۲	My Portal	FS W	ALLS R	OOMS	DOORS	WIN	DOWS (GLOBAL FACTO	ORS						Com	pleteness
1	Results		Storey 1 *	Storey 2 *		Storey 3 *									totai	evidence
Â	Building	-	2.0			2.4									BE	R)A1
ş	Ventilation		Description				Age Band	U/F Heating	In Roof	Exposed Perimeter	Area	U-Value			骨	22.55 kWh/m²/yr
6	Space Heating	or - Suspended	Floor zero				2005 onwards	No	Yes	40.00	60.00	0.410	Ō	Ô	ŝ	4.34 kgC0 ₂ /m ² /yr
۵	Water Heating	or - Solid					2005 onwards	Yes	No		60.00	0,170	0	Ō	Cor	npliance
Ō	Lighting						120.00					Ð	ADD F	LOOR	赏	arget 0.3
Ø	Renewables	rea (m²)					120.00								1000 1000	target
																0.35 pet 2

8	sea	SUSTAINABLE DIRECTACTHORITY	DEAP4				• Addres					1	🕱 Assess	ment 🔅	۲	<
۲	FLOORS	ROOFS	WALLS	ROOMS	DOOR	IS	WINDOW	S GLO	BAL FACT	DRS			An	ta -	Com	pleteness
														120.00 m ²	89%	60%
1.			Storey 1 *	Storey 2 *	Storey 3 *								Heat Loss	Elements		
~	Average S	torey Height	2.8	2.7	2.4								Floors	120.00 m ²	Pen	ormance
													Roofs	1,245.00 m ²	BE	R)A1
Sec.	Storey ~	Туре	Description	Age B	and	U/F Heating	In Roof	Exposed Perimeter	Area	U-Value			Walls	$2,044.00\mathrm{m}^2$	雨	22.55
3.						ricuting		- connector					Door	2.85 m ²	PA	kWh/m²/yr
5	1	Ground Floor - Suspended	Floor zero	2005 0	onwards	No	Yes	40.00	60.00	0.410	5	Ō	Windows	5.00 m ²	ŝ	4.34 knC0s/m2/vr
~													Total per m ²	97.15 m ²	Cor	mpliance
	1	Ground Floor - Solid		2005 0	onwards	Yes	No		60.00	0.170	D	Ō	Max U-	Values	0050	
0													Average	\otimes	₫₹	arget
¥	Total Floo	r area (m²)			1	20.00				Ð	ADD F	LOOR	Elemental	8		0.3
0	Total Hea	t Loss Floor Area (m	1 ²)		1:	20.00									0.049	
~															1-6	0.35
															0.012	
															1 tan	pet
															0.	2

Heat Pump Consultation

The technical changes include:

- Revised standard EN15316-4-2 updated from 2008 to 2017 version
- Direct-exchange (DX) heat pumps
- Gas fired heat pumps (GAHP)
- Low temperature heat pumps for space heating only
- Exhaust air heat pumps (EAHP)
- Double-duct heat pumps and heat recovery systems incorporating heat pump functionality
- New approach to bivalent systems and clarification for buildings heated by more than one heat pump
- Accounting for the "degradation coefficient" in oversized heat pumps
- Other calculation refinements

DEAP Heat Pump Methodology Proposed changes	
For Public Consultation: Q1 2019	
vi	1.0

Exhaust Air Heat Pumps – Renewable Contribution

Renewable Contribution in line with Renewable Energy Directive

% Renewable based on load provided by Heat Pump versus load provided by Heat Pump and Ventilation system specific to Irish weather data

Case Study – Sean Foster Place

Natalie Walsh, NMA Daniel Matthews, Homan O'Brien

HOMAN C'BRIEN

AUSTIN REDDY & COMPANY

Sustainable Engineering Solutions Ltd

murray & associates

PSDP 👾 Turner & Townsend

NMA ARCHITECTS NZEB PILOT SEAN FOSTER PLACE HOUSING

NMA ARCHITECTS NZEB PILOT SEAN FOSTER PLACE HOUSING

GREEN ROOFS help mitigate against URBAN HEAT ISLAND EFFECT by increasing the building's solar reflectance index and delaying surface water run-off

sustainable solutions

1.5 PV PANELS per apartment provide energy efficient fuel for apartments and achieve renewable energy compliance with Part L requirements for DEAP analysis

SOLAR shading to south facing balconies and solar gain to apartments with g value of 0.42

TRIPLE GLAZED WINDOWS provide reduced heat loss of 0.8 W/m²K with sound reduction

an automose rate INSULATED cavity wall construction of 0.15 W/m²K with high AIR TIGHTNESS OF 2m³/hr/m²

heating / ventilation methor

HIGH EFFICIENCY exhaust air heat pump to each unit

NMA ARCHITECTS NZEB PILOT SEAN FOSTER PLACE HOUSING

NZEB DESIGN DEVELOPMENT

Fig 01. Part L for Dwellings and NZEB timeline (source: NMA Architects)

NZEB energy targets

Unit	Primary Energy (kWh/m2/yr)	Cost (€*)
NZEB Apartment 10	38.64	270.02
Part L Apartment 10	51.78	342.00
Annual calculated saving	13.14	71.98

cost comparisons

NMA ARCHITECTS + HOMAN O'BRIEN NZEB PILOT SEAN FOSTER PLACE HOUSING

BUILDING FABRIC Thermal Bridge Modelling

- Modelling the junctions has the potential to improve the BER rating considerably if well detailed
- Detailed analysis of building junctions was made to optimise thermal performance
- Junctions were modelled by thermal bridge analysis
- Calculation of surface temperatures and psi values

thermal modelling of architectural detailing

NMA ARCHITECTS NZEB PILOT SEAN FOSTER PLACE HOUSING

HEATING SYSTEM - Space heating + Domestic hot water site restrictions and building requirements impacted on the selection of heating system

- district heating was discounted because of scale & restrictions
- All types of heat pumps and were considered and evaluated
- Ventilation and heating strategies for the apartments considered
- Focus on comfort to occupants and user friendliness
- The ventilation system comprises of acoustically attenuated passive wall vents in the bedrooms and living rooms to outside air and extract from kitchen, wet rooms and stores

HOMAN O'BRIEN CONSULTING ENGINEERS NZEB PILOT SEAN FOSTER PLACE HOUSING

HEATING SYSTEM Exhaust Air Heat Pump

- Heat Pump type selected was Exhaust Air Heat Pump with integrated hot water storage and whole house extract ventilation unit
- Many benefits for a space constricted development in particular the integration of space heating, domestic hot water and ventilation system in one item
- Considerations to be taken in siting the unit include: noise to adjacent rooms, route for exhaust ductwork to external, service access and door undercuts
- System components to be considered include insulated exhaust ductwork, passive wall vents and external grilles
- Growing market sector with new products being introduced continually

Diagram of exhaust air heat pump operation

Typical exhaust air heat pump installation

HOMAN O'BRIEN CONSULTING ENGINEERS NZEB PILOT SEAN FOSTER PLACE HOUSING

ON-SITE COMPLIANCE - Challenges to achieving NZEB

- market difficulties with sourcing high performance products
- industry culture
- training of sub-contractors
- skilled contractors
- training of installers
- site management experience
- quality assurance on site and airtightness testing
- heat pump selection

NMA ARCHITECTS + HOMAN O'BRIEN NZEB PILOT SEAN FOSTER PLACE HOUSING

ON-SITE COMPLIANCE - Pre-site Stage Compliance Methodology

- NZEB Compliance Strategy Review Process
- 12 week compliance period
- NZEB solution critical components for Dwellings:
 - opaque fabric u values
 - glazing performance
 - thermal bridging
 - infiltration rate
 - whole house extract system ventilation
 - hot water system: heat pump serving hws cylinder
 - lighting energy efficient LED luminaires
 - exhaust air heat pump with integrated hot water storage
 - renewable energy technology: pv panel installation

NMA ARCHITECTS NZEB PILOT SEAN FOSTER PLACE HOUSING

- NZEB Co-ordinator + Site Supervisor (pilot project)
- Mechanical + Electrical coordinator
- NZEB Co-ordinator role separate from the role of contracts manager / site manager / site engineer / site foreman
- Contractor's Supervision and co-ordination is required to ensure the NZEB is achieved
- Provision of checking prior to submittal of detailed NEAP (common areas) methodology compliance data for DEAP and NEAP
- Selection of sub-contractors with experience + technical skills required to meet NZEB performance requirements
- Selection of materials, products, systems, equipment and components necessary to meet NZEB, performance requirements
- Timely appointment of sub-contractors + suppliers to ensure key components requirements confirmed at the start of the project

NMA ARCHITECTS NZEB PILOT SEAN FOSTER PLACE HOUSING

thermal modelling of architectural detailing

- Thermal modelling Contractors co-ordination and supervision to achieve compliance with thermal modelling requirements as set out in the NZEB Compliance Specification
- Organising tool box talks for all relevant sub-contractors and personnel whose work will or may impact on achieving NZEB performance requirements - Holding further tool box talks as necessary where evidence of non- compliance is highlighted by the ER

NMA ARCHITECTS NZEB PILOT SEAN FOSTER PLACE HOUSING

- Providing detailed method statements as part of the NZEB Compliance Strategy Review Process for ensuring compliance with NZEB performance requirements addressing potential site problem areas including:
 - services and renewable energy technology installation
 - services penetrations
 - quality of workmanship
 - thermal bridging
 - air tightness including all gaps between building elements
 - quality of workmanship to cavity walls
 - quality of workmanship to roofs
 - quality of workmanship to balconies
 - services
- Managing remedial / replacement works where non compliances are highlighted by Employers Representative including providing evidence of resolution to satisfaction of ER

NMA ARCHITECTS NZEB PILOT SEAN FOSTER PLACE HOUSING

- Training toolbox talk on site, on appropriate fixing requirements, and avoidance of gaps in insulation
- Air tightness Contractor shall appoint and notify to ER, of an air tightness specialist at the start of project

All services penetrations through walls, floors, soffits and roofs need to be supervised to ensure that they do not compromise overall thermal performance of building

 Services & Renewable Energy Technology Co-ordinate services + renewable energy technology requirements to ensure compliance with performance requirements - to include all elements required to meet NZEB performance requirements including those set out in Employer Designed NZEB solution critical components section

NMA ARCHITECTS NZEB PILOT SEAN FOSTER PLACE HOUSING NORTH KING STREET DUBLIN CITY COUNCIL MARCH 2019

Overheating Study

Pratima Washan

AECOM

67

Seal Sustainable Energy Authority OF IRELAND ENERGY SHOW

Do new homes with advanced thermal performance tend to overheat?

- Are certain dwelling types more prone to risk of overheating?
- Which design features most influence the risk?
- What is the sensitivity to weather data?
- What type of interventions can help mitigate the risk?
- Is there scope/ need to refine existing tools to adequately capture the risk?

Seal SUSTAINABLE ENERGY SHOW When is a dwelling considered to have a high risk of overheating?

CIBSE TM59 compliance criteria

- Criterion A For living rooms, kitchens and bedrooms: Internal temperature should not exceed a defined comfort temperature by 1 °C or more for >3% of occupied hours over the summer period (May – Sept)
- Criterion B For bedrooms: Internal temperature should not exceed 26°C for more than 1% of annual hours between 10pm and 7am

Analysis based on standard occupancy.

Criterion A threshold comfort temperature reduced by 1°C for buildings with vulnerable occupants.

Modelling parameters and assumptions

Future weather data – DSY1 2020s High emissions scenario

TATE Occupancy in all rooms

Fabric thermal performance as per TGD L 2018

Medium thermal mass, masonry construction

Internal gains (lighting, equipment) as per TM59 18°C set point for heating excl. June, July and August

Windows in occupied rooms start to open when internal temp >22°C, fully open when >26°C

Openable area 1/20th of floor area for habitable rooms

Seal SUSTAINABLE ENERGY AUTHORITY OF IRELAND Modelling parameters and assumptions

ENERGY

Modelling scenarios

Individual

- Weather data
- Glazing areas and g-value
- Ventilation & window opening areas
- Dwelling design and construction
 - Orientation
 - Thermal mass
 - Ceiling heights
- Window shading
- Internal gains

Combined

Weather data

+

Single sided ventilation

+

Glazing area /window opening area/ shading / fabric U-values

ENERGY Overheating risk - Weather data – Criterion A

ENERGY Overheating risk - Weather data – Criterion B

Seai SUSTAINABLE OF IRELAND Overheating risk – Glazing – Criterion A

Seai SUSTAINABLE ENERGY OVErheating risk –Ventilation – Criterion A

Overheating risk – Design – Criterion A

Seai SUSTAINABLE OF IRELAND OVERheating risk —Internal gains — Criterion A SHC

SUSTAINABLE ENERGY AUTHORITY OF IRELAND Overheating risk – Shading – Criterion A FNFRGV

sea

Overheating risk – Combined – Criterion A

Overheating risk – Combined – Criterion B

Seal SUSTAINABLE ENERGY AUTHORITY OF IRFL AND

ENERGY

- Modelling of 2018 fabric standards using future/current weather data highlights the need to consider overheating risk in new build design
- Key parameters to consider
 - Net solar gains (glazed areas, window g-value, shading)
 - Ventilation rates (window opening areas; ability to cross-ventilate)
- Choice of weather data fit for purpose over a significant proportion of the building life; build resilience
- Aggregated impacts are critical!

Panel Discussion

The Sustainable Energy Authority of Ireland is partly financed by Ireland's EU Structural Funds Programme co-funded by the Irish Government and the European Union.